Recent Posts
Archives

Posts Tagged ‘CDS’

PostHeaderIcon [DevoxxBE2024] Project Leyden: Improving Java’s Startup Time by Per Minborg, Sébastien Deleuze

Per Minborg and Sébastien Deleuze delivered an insightful joint presentation at Devoxx Belgium 2024, unveiling the transformative potential of Project Leyden to enhance Java application startup time, warmup, and footprint. Per, from Oracle’s Java Core Library team, and Sébastien, a Spring Framework core committer at Broadcom, explored how Leyden shifts computation across time to optimize performance. Despite minor demo hiccups, such as Wi-Fi-related delays, their talk combined technical depth with practical demonstrations, showcasing how Spring Boot 3.3 leverages Leyden’s advancements, cutting startup times significantly and paving the way for future Java optimizations.

Understanding Project Leyden’s Mission

Project Leyden, an open-source initiative under OpenJDK, aims to address long-standing Java performance challenges: startup time, warmup time, and memory footprint. Per explained startup as the duration from launching a program to its first useful operation, like displaying “Hello World” or serving a Spring app’s initial request. Warmup, conversely, is the time to reach peak performance via JIT compilation. Leyden’s approach involves shifting computations earlier (e.g., at build time) or later (e.g., via lazy initialization) while preserving Java’s dynamic nature. Unlike GraalVM Native Image or Project CRaC, which sacrifice dynamism for speed, Leyden maintains compatibility, allowing developers to balance performance and flexibility.

Class Data Sharing (CDS) and AOT Cache: Today’s Solutions

Per introduced Class Data Sharing (CDS), a feature available since JDK 5, and its evolution into the Ahead-of-Time (AOT) Cache, a cornerstone of Leyden’s strategy. CDS preloads JDK classes, while AppCDS, introduced in JDK 10, extends this to application classes. The AOT Cache, an upcoming enhancement, stores class objects, resolved linkages, and method profiles, enabling near-instant startup. Sébastien demonstrated this with a Spring Boot Pet Clinic application, reducing startup from 3.2 seconds to 800 milliseconds using CDS and AOT Cache. The process involves a training run to generate the cache, which is then reused for faster deployments, though it requires consistent JVM and classpath configurations.

Spring Boot’s Synergy with Leyden

Sébastien highlighted the collaboration between the Spring and Leyden teams, initiated after a 2023 JVM Language Summit case study. Spring Boot 3.3 introduces features to simplify CDS and AOT Cache usage, such as extracting executable JARs into a CDS-friendly layout. A demo showed how a single command extracts the JAR, runs a training phase, and generates a cache, which is then embedded in a container image. This reduced startup times by up to 4x and memory usage by 20% when combined with Spring’s AOT optimizations. Sébastien also demonstrated how AOT Cache retains JIT “warmness,” enabling near-peak performance from startup, though a minor performance plateau gap is being addressed.

Future Horizons and Trade-offs

Looking ahead, Leyden plans to introduce stable values, a hybrid between mutable and immutable fields, offering final-like performance with flexible initialization. Per emphasized that Leyden avoids the heavy constraints of GraalVM (e.g., limited reflection) or CRaC (e.g., Linux-only, security concerns with serialized secrets). While CRaC achieves millisecond startups, its lifecycle complexities and security risks limit adoption. Leyden’s AOT Cache, conversely, offers significant gains (2–4x faster startups) with minimal constraints, making it ideal for most use cases. Developers can experiment with Leyden’s early access builds to optimize their applications, with further enhancements like code cache storage on the horizon.

Hashtags: #ProjectLeyden #Java #SpringBoot #AOTCache #CDS #StartupTime #JVM #DevoxxBE2024 #PerMinborg #SébastienDeleuze

PostHeaderIcon [DevoxxUK2024] Project Leyden: Capturing Lightning in a Bottle by Per Minborg

Per Minborg, a seasoned member of Oracle’s Core Library team, delivered an insightful session at DevoxxUK2024, unveiling the ambitions of Project Leyden, a transformative initiative to enhance Java application performance. Focused on slashing startup time, accelerating warmup, and reducing memory footprint, Per’s talk explores how Java can evolve to meet modern demands while preserving its dynamic nature. By strategically shifting computations to optimize execution, Project Leyden introduces innovative techniques like condensers and enhanced Class Data Sharing (CDS). This session provides a roadmap for developers seeking to harness Java’s potential in high-performance environments, balancing flexibility with efficiency.

The Vision of Project Leyden

Per begins by outlining the core objectives of Project Leyden: improving startup time, warmup time, and memory footprint. Startup time, the duration from launching an application to its first meaningful output (e.g., a “Hello World” or serving a web request), is critical for user experience. Warmup time, the period until an application reaches peak performance through JIT compilation, can hinder responsiveness in dynamic systems. Footprint, encompassing memory and storage use, impacts scalability, especially in cloud environments. Per emphasizes that the best approach is to eliminate unnecessary computations, but when that’s not feasible, shifting them temporally—either earlier to compile time or later to runtime—can yield significant gains. This philosophy underpins Leyden’s strategy to refine Java’s execution model.

Shifting Computations for Efficiency

A cornerstone of Project Leyden is the concept of temporal computation shifting. Per explains that Java’s dynamic nature—encompassing dynamic class loading, JIT compilation, and runtime optimizations—enables expressive programming but can inflate startup and warmup times. By moving computations to build time, such as through constant folding or ahead-of-time (AOT) compilation, Leyden reduces runtime overhead. Alternatively, lazy evaluation postpones non-critical tasks, streamlining startup. Per introduces condensers, a novel mechanism that transforms program representations by shifting computations earlier, adding metadata, or imposing constraints on dynamism. Condensers are composable, meaning-preserving, and selectable, allowing developers to tailor optimizations based on application needs. For instance, a condenser might precompile lambda expressions into bytecode at build time, slashing runtime costs.

Enhancing Class Data Sharing (CDS)

Per delves into Class Data Sharing (CDS), a long-standing Java feature that Project Leyden enhances to achieve dramatic performance boosts. CDS allows pre-initialized JDK classes to be stored in a file, bypassing costly class loading during startup. With CDS++, Leyden extends this to include application classes, compiled code, and resolved constant pool references. Per shares compelling benchmarks: a test compiling 100 small Java files achieved a 2x startup improvement, while an XML parsing workload saw an 8x boost. For the Spring Pet Clinic benchmark, Leyden’s optimizations, including early class loading and cached compiled code, yielded up to 4x faster startup. These gains stem from a training run approach, where a representative execution gathers profiling data to inform optimizations, ensuring compatibility across platforms.

Balancing Dynamism and Performance

Java’s dynamism—encompassing dynamic typing, class loading, and reflection—empowers developers but complicates optimization. Per proposes selective constraints to balance this trade-off. For example, developers can restrict dynamic class loading for specific modules, enabling aggressive optimizations without sacrificing Java’s flexibility. The stable value feature, initially part of Leyden but now a standalone JEP, allows delayed initialization of final fields while maintaining performance akin to compile-time constants. Per illustrates this with a Fibonacci computation example, where memoization using stable values drastically reduces recursive overhead. By offering a “mixer board” of concessions, Leyden empowers developers to fine-tune performance, ensuring compatibility and preserving program semantics across diverse use cases.

Links: