Posts Tagged ‘FFMAPI’
[DevoxxBE2023] The Panama Dojo: Black Belt Programming with Java 21 and the FFM API by Per Minborg
In an engaging session at Devoxx Belgium 2023, Per Minborg, a Java Core Library team member at Oracle and an OpenJDK contributor, guided attendees through the intricacies of the Foreign Function and Memory (FFM) API, a pivotal component of Project Panama. With a blend of theoretical insights and live coding, Per demonstrated how this API, in its third preview in Java 21, enables seamless interaction with native memory and functions using pure Java code. His talk, dubbed the “Panama Dojo,” showcased the API’s potential to enhance performance and safety, culminating in a hands-on demo of a lightweight microservice framework built with memory segments, arenas, and memory layouts.
Unveiling the FFM API’s Capabilities
Per introduced the FFM API as a solution to the limitations of Java Native Interface (JNI) and direct buffers. Unlike JNI, which requires cumbersome C stubs and inefficient data passing, the FFM API allows direct native memory access and function calls. Per illustrated this with a Point
struct example, where a memory segment models a contiguous memory region with 64-bit addressing, supporting both heap and native segments. This eliminates the 2GB limit of direct buffers, offering greater flexibility and efficiency.
The API introduces memory segments with constraints like size, lifetime, and thread confinement, preventing out-of-bounds access and use-after-free errors. Per highlighted the importance of deterministic deallocation, contrasting Java’s automatic memory management with C’s manual approach. The FFM API’s arenas, such as confined and shared arenas, manage segment lifecycles, ensuring resources are freed explicitly, as demonstrated in a try-with-resources block that deterministically deallocates a segment.
Structuring Memory with Layouts and Arenas
Memory layouts, a key FFM API feature, provide a declarative way to define memory structures, reducing manual offset computations. Per showed how a Point
layout with x
and y
doubles uses var handles to access fields safely, leveraging JIT optimizations for atomic operations. This approach minimizes bugs in complex structs, as var handles inherently account for offsets, unlike manual calculations.
Arenas further enhance safety by grouping segments with shared lifetimes. Per demonstrated a confined arena, restricting access to a single thread, and a shared arena, allowing multi-threaded access with thread-local handshakes for safe closure. These constructs bridge the gap between C’s flexibility and Rust’s safety, offering a balanced model for Java developers. In his live demo, Per used an arena to allocate a MarketInfo
segment, showcasing deterministic deallocation and thread safety.
Building a Persistent Queue with Memory Mapping
The heart of Per’s session was a live coding demo constructing a persistent queue using memory mapping and atomic operations. He defined a MarketInfo
record for stock exchange data, including timestamp, symbol, and price fields. Using a record mapper, Per serialized and deserialized records to and from memory segments, demonstrating immutability and thread safety. The mapper, a potential future JDK feature, simplifies data transfer between Java objects and native memory.
Per then implemented a memory-mapped queue, where a file-backed segment stores headers and payloads. Headers use atomic operations to manage mutual exclusion across threads and JVMs, ensuring safe concurrent access. In the demo, a producer appended MarketInfo
records to the queue, while two consumers read them asynchronously, showcasing low-latency, high-performance data sharing. Per’s use of sparse files allowed a 1MB queue to scale virtually, highlighting the API’s efficiency.
Crafting a Microservice Framework
The session culminated in assembling these components into a microservice framework. Per’s queue, inspired by Chronicle Queue, supports persistent, high-performance data exchange across JVMs. The framework leverages memory mapping for durability, atomic operations for concurrency, and record mappers for clean data modeling. Per demonstrated its practical application by persisting a queue to a file and reading it in a separate JVM, underscoring its robustness for distributed systems.
He emphasized the reusability of these patterns across domains like machine learning and graphics processing, where native libraries are prevalent. Tools like jextract, briefly mentioned, further unlock native libraries like TensorFlow, enabling Java developers to integrate them effortlessly. Per’s framework, though minimal, illustrates how the FFM API can transform Java’s interaction with native code, offering a safer, faster alternative to JNI.
Performance and Safety in Harmony
Throughout, Per stressed the FFM API’s dual focus on performance and safety. Native function calls, faster than JNI, and memory segments with strict constraints outperform direct buffers while preventing common errors. The API’s integration with existing JDK features, like var handles, ensures compatibility and optimization. Per’s live coding, despite its complexity, flowed seamlessly, reinforcing the API’s practicality for real-world applications.
Conclusion: Embracing the Panama Dojo
Per’s session was a masterclass in leveraging the FFM API to push Java’s boundaries. By combining memory segments, layouts, arenas, and atomic operations, he crafted a framework that exemplifies the API’s potential. His call to action—experiment with the FFM API in Java 21—invites developers to explore this transformative tool, promising enhanced performance and safety for native interactions. The Panama Dojo left attendees inspired to break new ground in Java development.