Recent Posts
Archives

Posts Tagged ‘JohanJanssen’

PostHeaderIcon [DevoxxBE2023] How Sand and Java Create the World’s Most Powerful Chips

Johan Janssen, an architect at ASML, captivated the DevoxxBE2023 audience with a deep dive into the intricate process of chip manufacturing and the role of Java in optimizing it. Johan, a seasoned speaker and JavaOne Rock Star, explained how ASML’s advanced lithography machines, powered by Java-based software, enable the creation of cutting-edge computer chips used in devices worldwide.

From Sand to Silicon Wafers

Johan began by demystifying chip production, starting with silica sand, an abundant resource transformed into silicon ingots and sliced into wafers. These wafers, approximately 30 cm in diameter, serve as the foundation for chips, hosting up to 600 chips per wafer or thousands for smaller sensors. He passed around a wafer adorned with Java’s mascot, Duke, illustrating the physical substrate of modern electronics.

The process involves printing multiple layers—up to 200—onto wafers using extreme ultraviolet (EUV) lithography machines. These machines, requiring four Boeing 747s for transport, achieve precision at the nanometer scale, with transistors as small as three nanometers. Johan likened this to driving a car 300 km and retracing the path with only 2 mm deviation, highlighting the extraordinary accuracy required.

The Role of EUV Lithography

Johan detailed the EUV lithography process, where tin droplets are hit by a 40-kilowatt laser to generate plasma at sun-like temperatures, producing EUV light. This light, directed by ultra-flat mirrors, patterns wafers through reticles costing €250,000 each. The process demands cleanroom environments, as even a single dust particle can ruin a chip, and involves continuous calibration to maintain precision across thousands of parameters.

ASML’s machines, some over 30 years old, remain in use for producing sensors and less advanced chips, demonstrating their longevity. Johan also previewed future advancements, such as high numerical aperture (NA) machines, which will enable even smaller transistors, further enhancing chip performance and energy efficiency.

Java-Powered Analytics Platform

At the heart of Johan’s talk was ASML’s Java-based analytics platform, which processes 31 terabytes of data weekly to optimize chip production. Built on Apache Spark, the platform distributes computations across worker nodes, supporting plugins for data ingestion, UI customization, and processing. These plugins allow departments to integrate diverse data types, from images to raw measurements, and support languages like Julia and C alongside Java.

The platform, running on-premise to protect sensitive data, consolidates previously disparate applications, improving efficiency and user experience. Johan highlighted a machine learning use case where the platform increased defect detection from 70% to 92% without slowing production, showcasing Java’s role in handling complex computations.

Challenges and Solutions in Chip Manufacturing

Johan discussed challenges like layer misalignment, which can cause short circuits or defective chips. The platform addresses these by analyzing wafer plots to identify correctable errors, such as adjusting subsequent layers to compensate for misalignments. Non-correctable errors may result in downgrading chips (e.g., from 16 GB to 8 GB RAM), ensuring minimal waste.

He emphasized a pragmatic approach to tool selection, starting with REST endpoints and gradually adopting Kafka for streaming data as needs evolved. Johan also noted ASML’s collaboration with tool maintainers to enhance compatibility, such as improving Spark’s progress tracking for customer feedback.

Future of Chip Manufacturing

Looking ahead, Johan highlighted the industry’s push to diversify chip production beyond Taiwan, driven by geopolitical and economic factors. However, building new factories, or “fabs,” costing $10–20 billion, faces challenges like equipment backlogs and the need for highly skilled operators. ASML’s customer support teams, working alongside clients like Intel, underscore the specialized knowledge required.

Johan concluded by stressing the importance of a forward-looking mindset, with ASML’s roadmap prioritizing innovation over rigid methodologies. This approach, combined with Java’s robustness, ensures the platform’s scalability and adaptability in a rapidly evolving industry.

Links: