Recent Posts
Archives

Posts Tagged ‘PlayFramework’

PostHeaderIcon [ScalaDaysNewYork2016] Monitoring Reactive Applications: New Approaches for a New Paradigm

Reactive applications, built on event-driven and asynchronous foundations, require innovative monitoring strategies. At Scala Days New York 2016, Duncan DeVore and Henrik Engström, both from Lightbend, explored the challenges and solutions for monitoring such systems. They discussed how traditional monitoring falls short for reactive architectures and introduced Lightbend’s approach to addressing these challenges, emphasizing adaptability and precision in observing distributed systems.

The Shift from Traditional Monitoring

Duncan and Henrik began by outlining the limitations of traditional monitoring, which relies on stack traces in synchronous systems to diagnose issues. In reactive applications, built with frameworks like Akka and Play, the asynchronous, message-driven nature disrupts this model. Stack traces lose relevance, as actors communicate without a direct call stack. The speakers categorized monitoring into business process, functional, and technical types, highlighting the need to track metrics like actor counts, message flows, and system performance in distributed environments.

The Impact of Distributed Systems

The rise of the internet and cloud computing has transformed system design, as Duncan explained. Distributed computing, pioneered by initiatives like ARPANET, and the economic advantages of cloud platforms have enabled businesses to scale rapidly. However, this shift introduces complexities, such as network partitions and variable workloads, necessitating new monitoring approaches. Henrik noted that reactive systems, designed for scalability and resilience, require tools that can handle dynamic data flows and provide insights into system behavior without relying on traditional metrics.

Challenges in Monitoring Reactive Systems

Henrik detailed the difficulties of monitoring asynchronous systems, where data flows through push or pull models. In push-based systems, monitoring tools must handle high data volumes, risking overload, while pull-based systems allow selective querying for efficiency. The speakers emphasized anomaly detection over static thresholds, as thresholds are hard to calibrate and may miss nuanced issues. Anomaly detection, exemplified by tools like Prometheus, identifies unusual patterns by correlating metrics, reducing false alerts and enhancing system understanding.

Lightbend’s Monitoring Solution

Duncan and Henrik introduced Lightbend Monitoring, a subscription-based tool tailored for reactive applications. It integrates with Akka actors and Lagom circuit breakers, generating metrics and traces for backends like StatsD and Telegraf. The solution supports pull-based monitoring, allowing selective data collection to manage high data volumes. Future enhancements include support for distributed tracing, Prometheus integration, and improved Lagom compatibility, aiming to provide a comprehensive view of system health and performance.

Links:

PostHeaderIcon [ScalaDaysNewYork2016] Lightbend Lagom: Crafting Microservices with Precision

Microservices have become a cornerstone of modern software architecture, yet their complexity often poses challenges. At Scala Days New York 2016, Mirco Dotta, a software engineer at Lightbend, introduced Lagom, an open-source framework designed to simplify the creation of reactive microservices. Mirco showcased how Lagom, meaning “just right” in Swedish, balances developer productivity with adherence to reactive principles, offering a seamless experience from development to production.

The Philosophy of Lagom

Mirco emphasized that Lagom prioritizes appropriately sized services over the “micro” aspect of microservices. By focusing on clear boundaries and isolation, Lagom ensures services are neither too small nor overly complex, aligning with the Swedish concept of sufficiency. Built on Play Framework and Akka, Lagom is inherently asynchronous and non-blocking, promoting scalability and resilience. Mirco highlighted its opinionated approach, which standardizes service structures to enhance consistency across teams, allowing developers to focus on domain logic rather than infrastructure.

Development Environment Efficiency

Lagom’s development environment, inspired by Play Framework, is a standout feature. Mirco demonstrated this with a sample application called Cheerer, a Twitter-like service. Using a single SBT command, runAll, developers can launch all services, including an embedded Cassandra server, service locator, and gateway, within one JVM. The environment supports hot reloading, automatically recompiling and restarting services upon code changes. This streamlined setup, consistent across different machines, frees developers from managing complex scripts, enhancing productivity and collaboration.

Service and Persistence APIs

Lagom’s service API is defined through a descriptor method, specifying endpoints and metadata for inter-service communication. Mirco showcased a “Hello World” service, illustrating how services expose endpoints that other services can call, facilitated by the service locator. For persistence, Lagom defaults to Cassandra, leveraging its scalability and resilience, but allows flexibility for other data stores. Mirco advocated for event sourcing and CQRS (Command Query Responsibility Segregation), noting their suitability for microservices. These patterns enable immutable event logs and optimized read views, simplifying data management and scalability.

Production-Ready Features

Transitioning to production is seamless with Lagom, as Mirco demonstrated through its integration with SBT Native Packager, supporting formats like Docker images and RPMs. Lightbend Conductor, available for free in development, simplifies orchestration, offering features like rolling upgrades and circuit breakers for fault tolerance. Mirco highlighted ongoing work to support other orchestration tools like Kubernetes, encouraging community contributions to expand Lagom’s ecosystem. Circuit breakers and monitoring capabilities further ensure service reliability in production environments.

Links: