Recent Posts
Archives

Posts Tagged ‘SparkStreaming’

PostHeaderIcon [ScalaDaysNewYork2016] Connecting Reactive Applications with Fast Data Using Reactive Streams

The rapid evolution of data processing demands systems that can handle real-time information efficiently. At Scala Days New York 2016, Luc Bourlier, a software engineer at Lightbend, delivered an insightful presentation on integrating reactive applications with fast data architectures using Apache Spark and Reactive Streams. Luc demonstrated how Spark Streaming, enhanced with backpressure support in Spark 1.5, enables seamless connectivity between reactive systems and real-time data processing, ensuring responsiveness under varying workloads.

Understanding Fast Data

Luc began by defining fast data as the application of big data tools and algorithms to streaming data, enabling near-instantaneous insights. Unlike traditional big data, which processes stored datasets, fast data focuses on analyzing data as it arrives. Luc illustrated this with a scenario where a business initially runs batch jobs to analyze historical data but soon requires daily, hourly, or even real-time updates to stay competitive. This shift from batch to streaming processing underscores the need for systems that can adapt to dynamic data inflows, a core principle of fast data architectures.

Spark Streaming and Backpressure

Central to Luc’s presentation was Spark Streaming, an extension of Apache Spark designed for real-time data processing. Spark Streaming processes data in mini-batches, allowing it to leverage Spark’s in-memory computation capabilities, a significant advancement over Hadoop’s disk-based MapReduce model. Luc highlighted the introduction of backpressure in Spark 1.5, a feature developed by his team at Lightbend. Backpressure dynamically adjusts the data ingestion rate based on processing capacity, preventing system overload. By analyzing the number of records processed and the time taken in each mini-batch, Spark computes an optimal ingestion rate, ensuring stability even under high data volumes.

Reactive Streams Integration

To connect reactive applications with Spark Streaming, Luc introduced Reactive Streams, a set of Java interfaces designed to facilitate communication between systems with backpressure support. These interfaces allow a reactive application, such as one generating random numbers for a Pi computation demo, to feed data into Spark Streaming without overwhelming the system. Luc demonstrated this integration using a Raspberry Pi cluster, showcasing how backpressure ensures the system remains stable by throttling the data producer when processing lags. This approach maintains responsiveness, a key tenet of reactive systems, by aligning data production with consumption capabilities.

Practical Demonstration and Challenges

Luc’s live demo vividly illustrated the integration process. He presented a dashboard displaying a reactive application computing Pi approximations, with Spark analyzing the generated data in real time. Initially, the system handled 1,000 elements per second efficiently, but as the rate increased to 4,000, processing delays emerged without backpressure, causing data to accumulate in memory. By enabling backpressure, Luc showed how Spark adjusted the ingestion rate, maintaining processing times around one second and preventing system failure. He noted challenges, such as the need to handle variable-sized records, but emphasized that backpressure significantly enhances system reliability.

Future Enhancements

Looking forward, Luc discussed ongoing improvements to Spark’s backpressure mechanism, including better handling of aggregated records and potential integration with Reactive Streams for enhanced pluggability. He encouraged developers to explore Reactive Streams at reactivestreams.org, noting its inclusion in Java 9’s concurrent package. These advancements aim to further streamline the connection between reactive applications and fast data systems, making real-time processing more accessible and robust.

Links: