Recent Posts
Archives

Posts Tagged ‘StructuredOutputs’

PostHeaderIcon [DevoxxFR2025] Building an Agentic AI with Structured Outputs, Function Calling, and MCP

The rapid advancements in Artificial Intelligence, particularly in large language models (LLMs), are enabling the creation of more sophisticated and autonomous AI agents – programs capable of understanding instructions, reasoning, and interacting with their environment to achieve goals. Building such agents requires effective ways for the AI model to communicate programmatically and to trigger external actions. Julien Dubois, in his deep-dive session, explored key techniques and a new protocol essential for constructing these agentic AI systems: Structured Outputs, Function Calling, and the Model-Controller Protocol (MCP). Using practical examples and the latest Java SDK developed by OpenAI, he demonstrated how to implement these features within LangChain4j, showcasing how developers can build AI agents that go beyond simple text generation.

Structured Outputs: Enabling Programmatic Communication

One of the challenges in building AI agents is getting LLMs to produce responses in a structured format that can be easily parsed and used by other parts of the application. Julien explained how Structured Outputs address this by allowing developers to define a specific JSON schema that the AI model must adhere to when generating its response. This ensures that the output is not just free-form text but follows a predictable structure, making it straightforward to map the AI’s response to data objects in programming languages like Java. He demonstrated how to provide the LLM with a JSON schema definition and constrain its output to match that schema, enabling reliable programmatic communication between the AI model and the application logic. This is crucial for scenarios where the AI needs to provide data in a specific format for further processing or action.

Function Calling: Giving AI the Ability to Act

To be truly agentic, an AI needs the ability to perform actions in the real world or interact with external tools and services. Julien introduced Function Calling as a powerful mechanism that allows developers to define functions in their code (e.g., Java methods) and expose them to the AI model. The LLM can then understand when a user’s request requires calling one of these functions and generate a structured output indicating which function to call and with what arguments. The application then intercepts this output, executes the corresponding function, and can provide the function’s result back to the AI, allowing for a multi-turn interaction where the AI reasons, acts, and incorporates the results into its subsequent responses. Julien demonstrated how to define function “signatures” that the AI can understand and how to handle the function calls triggered by the AI, showcasing scenarios like retrieving information from a database or interacting with an external API based on the user’s natural language request.

MCP: Standardizing LLM Interaction

While Structured Outputs and Function Calling provide the capabilities for AI communication and action, the Model-Controller Protocol (MCP) emerges as a new standard to streamline how LLMs interact with various data sources and tools. Julien discussed MCP as a protocol that aims to standardize the communication layer between AI models (the “Model”) and the application logic that orchestrates them and provides access to external resources (the “Controller”). This standardization can facilitate building more portable and interoperable AI agentic systems, allowing developers to switch between different LLMs or integrate new tools and data sources more easily. While details of MCP might still be evolving, its goal is to provide a common interface for tasks like function calling, accessing external knowledge, and managing conversational state. Julien illustrated how libraries like LangChain4j are adopting these concepts and integrating with protocols like MCP to simplify the development of sophisticated AI agents. The presentation, rich in code examples using the OpenAI Java SDK, provided developers with the practical knowledge and tools to start building the next generation of agentic AI applications.

Links: